
DOCUMENT RESUME

ED 386 165 IR 017 293

AUTHOR Sheary, Kathryn Anne
TITLE Parallel Processing at the High School Level.
PUB DATE 95

NOTE 88p.; Master's Research Paper, University of Illinois
at Springfield.

PUB TYPE Dissertations/Theses Undetermined (040)

EDRS PRICE MFOI/PC04 Plus Postage.
DESCRIPTORS Computer Literacy; *Computer Science Education;

Computer Software; Computer Uses in Education; High
Schools; *High School Students; *Programming;
Surveys; Teacher Attitudes

IDENTIFIERS Illinois; *Parallel Processing

ABSTRACT
This study investigated the ability of high school

students to cognitively understand and implement parallel processing.
Data indicates that most parallel processing is being taught at the
university level. Instructional modules on C, Linux, and the parallel
processing language, P4, were designed to show that high school
students are highly capable of not only understanding, but of
applying parallel processing. Eight high school students, llth and
12th graders, were study participants. Students studied, evaluated,
and executed programs in C and P4 on the Linux operating system. A
complete description of the six instructional modules is provided.
Overall, the results of the instructional modules clearly indicate
that high school students can understand and implement parallel
processing. An unanticipated positive result of this project was the
high level of student motivation that resulted. Students pursued
additional avenues beyond the scope of this project and spent many
hours outside of class on the project. Also included in the study was
a survey of 30 high schools in Illinois concerning teaching parallel
processing and other programming languages. Results shows that most
high school teachers are unaware of the existence of parallel
processing and/or reluctant to advance their own knowledge in this
area. Appendices include the instructional modules, introductory
activities, performance tests, surveys, and C, Linux/Unix, and P4
handouts. Four figures and three tables illustrate data. (Contains 16
references.) (MAS)

* Reproductions supplied by EDRS are the best that can be made *

* from the original document. *

ri

PARALLEL PROCESSING AT THE

HIGH SCHOOL LEVEL

Presented in Partial Fulfillment of the Requirements
for the Degree Master of Arts of Mathematical Sciences

with a concentration in Computer Science

By

Kathryn Anne Sheary

BEST COPY AVAILABLE

University of Illinois at Sprin

1995

14 1 eld

U.R. DEPARTMENT OF EDUCATION
Office or Educational Peeearch and Improvement

EDUCADONAL RESOURCES INFORMATION
CENTER (ERIC)

0 Thm document has been reproduced as
received from the person or organization
origInahno it

0 Minor changes have been made to improve

reproduction quality

Points of view or opinions stated m this docu-

ment do not necessanly represent official
OE RI position or pohcy

"PERMISSION TO REPRODUCE THIS

MATERIAL H^S BEEN GRANTED BY

Kathryn A. Sheary

TO THE EDUCATIONAL RESOURCES

INFORMATION CENTER (ERIC)."

I would like to express my thanks to Dr. Mims and Dr. Tvfil ler for their support
during my graduate project and throughout my masters work.

A very special thanks to the following high school students for their cooperation
and help with this project:

Jolyn Braden, Rhonda Braden, Steve Brown, Tim Brown, Lisa Hoffinan,
Heather Huber, Jon Mullins, and Chris Reed.

An extra special thank you is extended to my husband and children for their support,
love, and patience during the long process of obtaining my masters degree.

LIST OF ILLUSTRATIONS

ABSTRACT

INTRODUCTION

RATIONALE AND SIGNIFICANCE

PROBLEM STATEMENT

LITERATURE REVIEW

DESIGN OF THE INVESTIGATION

SOFTWARE AND HARDWARE SPECIFICATIONS

PROCEDURES

METHODS FOR OBSERVATION AND INTERPRETATION

RESULTS

DISCUSSION

APPENDIX.

CONTENT

page

II

iv

1

1

3

3

15

15

18

20

21

27

29

REFERENCES 79

VITA_ 81

ILLUSTRATIONS

page .

FIGURES

1. Results Human Simulation 21

2. Results of C Quiz 22

3. Results of Linux Q11/7 23

4. Results of Final Tmt 24

TABLES

1. Universities that teach Parallel Processing in the U.S 5

2. Student Survey Results 25

3. H. S. Teacher Survey Results 26

APPENDIX A - INSTRUCHONAL MODULES

Instnictional Module One 29

Instructional Module Two 30

Instructional Module Three 3 1

Instructional Module Four 32

Instructional Module Five 33

Instructional Module Six 35

APPENDIX B - INTRODUCTORY ACTIVITIES

Human Simulation Log Sheet 36

Random Number Array in QBasic 37

P4 Code Message Passing 38

II

ILLUSTRATIONS CONT.

page

APPENDIX C - C HANDOUTS

A Guide To C 42

Random Number Generator in C 58

APPENDIX D - LINUX/UNIX HANDOUTS

UNIX commands 59

APPENDIX E - P4 HANDOUTS

P4 Notes 63

Simpie P4 Code 65

P4 Code With Array 66

APPENDIX F - PERFORMANCE TESTS

C Quiz 70

Linux Quiz 72

Final Test 73

APPENDIX G - SURVEYS

Student Survey 77

H.S. Teacher Survey 78

in

6

ABSTRACT

This study investigated the ability of high school students to cognitively understand and

implement parallel processing. Data indicates that most parallel processing is being taught

at the university level. No literature could be found to indicate that parallel processing is

being taught on the high school level. The results show that most high school teachers are

unaware of its existence and/or reluctant to advance their own knowledge in this area.

Instructional modules were designed to show that high school students are highly capable

of not only understanding, but also applying parallel processing. An unanticipated positive

result of this project was the high level of student motivation that resulted. Students

pursued additional avenues beyond the scope of the project and spent many hours outside

of class on the project. This study reports the results of teaching parallel processing to

high school studenis.

iv

Introduction

Can high school students understand and implement parallel processing? Public

high school education does not emphasize computer programming in the curriculum. This

project proved that despite this trend, high school students can succeed not only at

programming but at parallel processing.

The objective of this projea was to demonstrate that high school students can

understand and implement parallel processing. The task of demonstrating this objective

was accomplished through the use of small teaching modules and lessons on C, Linux, and

the parallel processing language, P4. Students studied, evaluated, and executed programs

in C and P4 on the Linux operating system. Performance tests conveyed that the students

successfully met the objective.

It was worthwhile to demonstrate that high school students could do more than

introductory programming in Basic or QBasic. Since students at the high school level are

capable of doing much more, then principals and superintendents of public school districts

may help to develop this aspect of the computer science curriculum. Administrators have

to be convinced of the importance of computer programming at the high school level.

Rationale and Significance

The total elimination of programming at the high school level is a possibility. First

of all, technology is changing faster than most schools can keep up with financially.

School administrators tend to 'jump" on popularity band wagons to improve their status

rating with neighboring school districts. Some might say they flow with the "technological

trend" of the time. Two years ago (1993-94) the big trend was to teach multimedia

1

classes at the high school level. This past year (1994-95) the big question, was "when can

we get Internet for our students?" Now the Maroa-Forsyth district, in which the author

teaches, is going to purchase new computers to access the Internet. Suggestions to start

a new telecommunications class that would include how to use the Internet have been

vetoed until some future date "down the road." This action indicates that administrators

who are not educated in computer science tend to "put the cart before the horse" just to

keep up with the popular trend. lEgh school administrators who do have an undersmnding

of technology develop Technology Plans before they go ,Jut and buy computer hardware

and software! Ten years ago when the district started offering computer science we had

more sections of programming classes than computer application classes. In the Maros-

Forsyth school district there have been cutbacks in the computer programming curriculum

over the last three years. During the 1994-95 school year, these offerings were reduced to

one section of programming. This possible elimination of programming seems to indicate

a need to prove to administrators that high school students need to take courses that

introduce them to computer science. Programming success at the high school level can

lead to further study at the university level which can result in quality programmers being

emphyed in the workplace and helping to further advance technology. Data is not

available from the surveys of past graduates. However, several former graduates have

completed college degrees in computer science and are employed in computing related

careers. To continue to prepare students for careers in computer science there is a need

for high school programming courses that introduce the students to innovations in the

field.

2

Problem Statement

Parallel processing is an exciting area of computing that is available and can be

utilized to stimulate the interest of high school students to pursue caTeers in the field of

computer science. Can high school students master the concepts of parallel processing?

This problem requires students to understand the C Programming language, the

Unix/Linux operating system, and P4, for parallel processing.

Literature Review

A review of the related literature seems to indicate this is a first attempt to formally

introduce parallel process* at the high school level. However, according to IEEE

Computer in August, 1994, an organization was formed in 1992 known as The 1EEE

Technical Commitue on Parallel Processing (TCPP). It was formed so scientists and

engineers could exchange ideas on parallel processing. One of its objectives was to

establish guidelines for parallel processing in education at the post-secondary level. The

TCPP published a report that contained course descriptions and class listings from more

than 70 sites including undergraduate institutions, university centers, research institutes,

and corporations that offer educational opportunities in parallel processing. The report is

included in table 1. After collecting this information, the TCPP found the following:

"At four-year colleges, courses in parallelism are beginning to appear. Many of

these colleges have access to either a small parallel machine (transputer-based) or a

small network of workstations. These machines are used for projects in the

courses and for independent studies on parallelism.

3

The trend at university centers in terms of graduate-level education appears to

provide an array of courses, including parallel algorithms, parallel progranuning,

and parallel architectures, to name a.few. The students have access to machines

either at the university.or at a National Science Foundation-sponsored site.

Typical machines used in the classroom include those manufactured by Maspar,

Thinking Machines (both the CM-2 and CM-5), Intel, and nCube.

The trend at university centers in terms of undergraduate education appears to

include aspects of parallelism in a variety of traditional courses (for example,

algorithms, architecture, operating systems, and programming languages) and to

provide at least one introductory course in parallel processing" (Miller 1994, 40).

4

i I

TABLE I <6.

This table serves to oneliy caleoonze
some al the trilomiarion found in The
full TCPP report.

be

c,
Q.,

'

(..-

-,
.c.,

4."o
o

Q

,-,
."-:*

<'

.:

c,
c,.

o
5.)

---s

?- .
cl.

0

4-

, _ok.'
.....-o

,

6'

k-
....-.:-

-:-

,.?

S'
Ci''''s

6'

.--..

.*-
cs

,..,

,:.-

..

,..-

e:.7

.

,-

-...

.5

.

Ft'

o

...

c..-
.C'..

.

-....

....`

....,

_

.= Subjects covered in under-
graduate courses

X = Subjects covered in grz,duate
COI] rSes

NS= Number of courses unspecified

Auburn University 3 4
-

ill li -0
M X

Bucknell University 1 - -0 -
Czlifornia Institute of Technology NS NS III 11 X

Oarke Collcoe - 4

Colgate University e 4 *

Colorado State University 1 2 al X .1 X

-Connecticut College I * -
Cornell University 1 3 4 X X X 0

It

Dartmouth College NS I X X X

Drexel University 1 3

PL.-1st:ern Connecticut State Univ. ' 0

Edinburgh Parallel Computing Cntr. 1 0 0

Gollaudet University

OctlysilurE., Coliege.

1

a a

i-'.nrvilid ljnivcrc:ty

Illinois State University

1

1

e

e

0

0

0

imyr, State University

tvI acainster College

Michigan State University

I

-)

5

6

X

X

X

it

X

6,

la

K

K

X

it

0 15 0-

*

Michigan Technology University 1
*

Mississippi Stoic University :. X X X X It

New Jcrscy Institute of Technology 3 X X X X

North Dakota Stale University 0 *

5

tugust 1994

BE.ST COPY AVAILABLE

*

t D's?

'''). ,\''''
.".`

..

z Ni:"

. , \S)

A

:,..-N'

:,\'.."

')'.

11

,al,

C

?
,0
0:

'3\N

Nc
\C

\()

'..--

, sk"

J.3'

Nc
\C
\-

*

C,

*

=C

'a\

,.4;oS

l'3

.

1,D
\''\C)

\C")

,NC\

0\0\

')``

\.''''

' \' C,

0,)

,..''')

0-1.\

cP
\\ e.,.')

-

..1:?-

'

\\N 0C
' °

,,,)J

>1'

.

.N
,\v

0

'3 \

, PQ

Jo

,)C-
\

'J

..;

)0

\--.

lts''

OC\

k x.

c.
's

.

, .1)0

,..

1,5

.3"C\

\
()

. \IN

i,\\?

-.:.:

Se:"

C

oc

-)

s
'
0 '

,,, cC".

c
''''

-0

p

p

.3
c2\54

'

\

c')
\)

a
Jv
v

'>

5

NAe

C

C-

).

0

z_I

11'
5

(-)

"--;

*

+

u
a

0.

:...,

c w

1.3

s)-

cp

$

_ -..

:-...
.

3

10.

,
.-:-a

-_-;

o

r) c

a+

c

0

-,

F-3

o

0

:,..

t.,. '5"

w

-3 c
.5.

7;

a

o

-,

o

-

9

-
.

-....

-.3"'

3

,

,-

61

*

tts

,)

* a

*

9

e.001\

sP's

$A)

*iv

CPS?

.,p)°

\N>c\ a(

r."aNN

Dis

\

4- #

z1

'

..z-hs''°'
.)

.., .,o\c:b
cr

. s

rp.
C

c,C\ --

lo
.

(K:9\

\
P

,,,NC\

0
3\ 10

oC\

i,.-`..?'''

'

,p

....os-,,

r:0

A VA

0C-\

cAo'D

\
ars

C

-1)

'

,e

\`)

.9t
,0\2

ocp

so
-

s4(i'

.cv-\

\P.°.

*

S
0S\

C

110..C?

-
SN'31

Based on the written documentation related to the college level, a portion of this project

focuses on documenting an attempt to introduce parallel programming at the high school

level. A survey instrument was developed to collect data from several schools in central

Illinois. The results of the survey indicated the current level of computer programming

and whether there is instruction in parallel processing taking place in the area schools.

[See Appendix G, p 78}.

First we will attempt to answer the question "What is parallel processing?"

"Parallel processing is a computer processing technique in which many operations are

performed simultaneously so the overall computation time is reduced" (Gehringer 1994) .

In serial processing, computation is performed in sequential order. Parallel processors

have many interconnected processors. A coarse-grained parallel processor contains a

small number of powerfill processors. A fine-grained or massively parallel machine

contains thousands of microprocessors.

Parallel processing was first hypothesized in the late 1940's and early 1950's.

Parallelism that today would be called horizontal microcode "...appeared in Turing's 1946

design of the Pilot ACE" (Ramakrishna 1993, 12). It was described by Wilkes and

Stringer in 1953 when they wrote, "In some cases it may be possible for two or more

micro-operations to take place at the same time" (Ramakrishna 1993, 12). Researchers

then believed they could build a computer to simulate the interconnected neurons of the

human brain. Electronic models of neural networks were built modeled on a small number

of neurons with limited connections. Early first-generation computers had architecture

that used bit-serial main memory and bit-serial central processing units (CPU). Each bit

8

1

was read from memory and arithmetic was performed on a bit by bit basis. Bit-parallel

memory was developed which led to bit-parallel arithmetic. Magnetic core memory was

developed as bit-parallel memory and used commercially by IBM in 1955. Input/Output

instructions were executed by the CPU on these computers. They had one arithmetic

logic wit in the CPU and could perform only one function at a time. (Ramakrishna 1993,

12)

Transistorized computers were developed in the 1960's. This led to successful

commercial machines that used the available hardware to provide instruction level

parallelism at the machine language level. In 1963 Control Data Corporation developed

its CDC 6600 which had ten fimctional units. Any one of these could execute in a certain

cycle even if the others were still processing data. This was the supercomputer of its time.

In 1965 the U.S. Department of Defense needed a computer that could simulate nuclear

devices because there was a ban on nuclear testing in 1962. They needed a computer that

could deliver about 100 MFLOPS (million floating-point operations per second), so the

Star-100 was developed. General Motors was also interested in two Star-100's if they

could be done by 1971. They did not make the deadline. The Star-100 became fully

operational in 1973. In the late 1960's IBM introduced and delivered its IBM 360/91

machine. It offered less instruction-level parallelism than the CDC 6600 and was not as

commercially successful. An important development in computer architecture was the use

of an independent I10 processor to handle I10 operations. The CPU sent I10 instructions

to the I10 processor which worked independently, freeing the CPU for other

computational tasks. The next architectural advance was the development of interleaved

9

and cache memory. A memory unit is divided into a number of modules in interleaved

memory. Each module has its own addressing circuitry and can be accessed

simultaneously. The cache memory is a small, fast memory section placed between the

CPU and main memory. The cache memory reduces the time the CPU must wait for data

to arrive from memory. Data accessed most frequently is kept in cache memory.

Computer speed was increased in these later generation computers by using multiple

functional units through instruction and data pipelining. The functional units are

independent and operate simultaneously. "Instruction pipelining allows mote than one

instruction to be in some stage of execution at the same time" (Chaudhuri 1992, 4). Each

instruction execution can be divided into various phases such as fetch instruction, decode

instruction, operand fetch and arithmetic logic execution. In a pipelined computer

successive instructions are executed in an overlapped manner. (Chaudhuri 1992, 5)

In the early 1970's the CDC 7600 designed by Seymour Cray and IBM's 3601195

were the frontrunners in supercomputers. The CDC 7600 did some parallelism, but was

mostly a serial computer. In 1976 the Cray-1, built by Cray Research Inc., took over large

computation from the CDC 7600. Vector capabilities were added to the Cray-1. A

vector computer allows operations on both vectors and scalars. Vectors are streamlined

from memory into the CPU and pipelined arithmetic units perform the operation. Other

pipelined vector computers wen the Cyber-205 and Fujitsu-200. Texas Instruments

Advanced Scientific computer was a vector machine also created in the early 1970's. It

used a pipeline architectaffe. The MAC IV designed by the University of Illinois used

distnbuted array processors. It had four quadrants each having 64 processors.

10

In 1973 one of these quadrants was built and installed a NASA Ames Research Center.

The term instruction level parallelism was twed more frequently i.br multiple processor

parallelism and for regular array and vector parallelism in the mid 1970's. The Parallel

Element Processing Ensemble Supercomputer was built by Burroughs for the Ballistics

Defense Technology Center in 1976. In 1977 and 1978 Burroughs tried to get in the

supercomputer market by building the Burroughs Scientific Processor. International

Computers Limited developed around this same time the DAP (Distributed Array

Processor). .M1 of the array processors discussed in the 1970's were SIMD (Single

Instruction Multiple Data) machines. (Lazou 1986, 30)

At this point it should be clarified that computer systems can be identified in four

distinct classes. They are (1) SIM.- Single Instruction Single Data, these computers

have one processor and one ALU; (2) - Single Instruclion Multiple Data, this

includes computers with a single program control unit and multiple ALU's; (3) MISQ -

Multiple Instruction Single Data, many processors execute instructions over the same

data; and (4) MUM - Multiple Instruction Multiple Data, these computers execute several

independent programs at the same time. In the late 1970's Denelcor, Inc. developed a

machine architecture known as the heterogeneous element processor. The BEEP computer

was a multiple instruction multiple data (M3MD) machine. Also in the late 1970's a new

style of instruction level parallelism was called Very Long Instruction Word (VLIW).

(Lazou 1986, 54)

Supercomputers in 1980 incorporated large scale integration (LSI) for both

memory and logic circuits. This later led to VLSI (Very Large Scale Integration), The

11

Control Data Star-100 was refitted with LSI chips. This led to the production of the

Cyber 205. Cray Research at this time put their effort into the production of the Cray-2

in 1985 and the Cray X-MP series. The Cray is an extension of the Cray-1 architecture.

"The multiple CPU organization of the Cray X-MP computers significantly increases the

opportunity for parallel operations during the solution of a large scale problem" (Lazou

1986, 2). This is accomplished by using the multitasking technique.

Multitasking and multiprocessing are two approaches used to increase system

performance and responsc. Many programs or tasks appear to operate in parallel in a

multitasking system. The responsibility for each task can be assigned to a specific part of

the system so that the entire system works like a team. The operating system supplies

intertask communication and scheduling. A multiprocessing system uses a number of

processors, each with its own memory to execute programs. At the same time, each

processor has access to a common memory. This allows execution of different parts of

the same program simultaneously. The advantage of multiprocessing over multitasking is

that separate programs can be assigned to specialized &actions. In 1984, published

articles stated Japan was going to bypass the U.S. in the manufacture of supercomputers.

A couple of supercomputers manufactured at this time in Japan were the Fujitsu FACOM

VP-200 and the HETAC S-810. The FACOM VP-200 compared its results to the U.S.

Cray X-MP. One of Japan's weaknesses at this time was dependence on IBM software.

As of March 1985 there were 150 supercomputers in the western world. Ten were made

in Japan, the rest were made in the United States. In 1985 supercomputers were selling

for between $10 million and $20 million each. (Davidson 1993, 27)

12

iJ

In October, 1991, Thinking Machines Corporation introduced the Connection

Machine model CM-5. It has MEMD capabilities and uses a RISC (Reduced Instniction

Set) microprocessor. It also uses a Unix-like operating system. Danny Fri Ills, a student at

Massachusetts Institute of Technology, is one of the co-founders of Thinking Machine.

This company was a pioneer in massively parallel computing. Thinking Machines

Corporation declared bankruptcy in August, 1994. They netted $83 =Mon in revenue in

1993, but lost $40 million the last two years. As a contributor in the evolution of

supercomputers, Thinking Machines Corporation was eventually "squeezed out" by bigger

companies in the computer market. (Schmit 1994, 2B)

NCUBE hardware architecture is a scalable network between 32 and 8192 general

purpose processing nodes. The NCUBE system can perform 60 billion instructions per

second and 27 GFLOPS (billion floating-point operations per second). Also developed in

the 90's was iWarp which was a joint effort between Intel Corporation and Carnegie

Mellon University. Also developed by Intel was il)SC and ff'SC/2. (Lafferty 1993, 60)

Computing in parallel has been done on shared memory systems, distributed

memory systems, and even a network of workstations. These different architectures are

programmed using a number of different paradigms. "There are three basic paradigms for

parallelism. They are the program's result (divides the total number of work into portions

to match the number of processors), a program's agenda of activities (master processor

sends work to slaves who keep coming back for more when the first job is done), and an

ensemble of specialists (specific processors perform specific types of work)" (Carriero

1992, 14). A large number of parallel programming languages and models have been

13

introduced during the last decade. Established languages include C and Fortran. Other

languages are Linda, Occam, Ada, and Parallwds. Object-oriented languages are

Smalltalk, Simula, and C-F. ProgrammerS can't really agree which parallel programming

language is best. There are at least ten different languages. Running applications today in

parallel is easier thanks to advanced multithreaded Unix kernels and other tools according

to Chuck Narad, engineer at Sun lvficrosystems Computer Corporation. (Narad 1993, 52)

Supercomputers are best used for scientific problems and calculating numbers.

Current supercomputers have had an impact in the area of science and engineering

including nuclear engineering, fusion devices, aerodynamic designs for weapon and

satellite delivery systems, research in astrophysics, elementary particle physics, quantum

chemistry, crystallography, oceanography, and meteorology. Commercially

supercomputers are used in aircraft design, motor car design, film production, seismic oil,

and mineral exploration. Future uses of supercomputers remain to be seen, but bas ed on

the changes and advances made thus far, the sky's the limit. (Lazou 1986, 2)

Mr. Grady Booch reported in an article in IEEE Software that he remembered

seeing the science fiction movie, 2001: A Space Odyssey in the late 1960's while growing

up. He went on to report that Arthur C. Clarke and Stanley Kubrick foresaw a number of

future technologies in their movie, such as massive parallel machines, videoconferencing,

networks that seem to be everywhere, and voice recognition. Upon leaving the theater he

thought to himseK "Who is going to write all that cool software?" (Booch 1994, 33).

14

At the secondary level instructors need to continue to motivate their students to pursue

careers in computer science. Parallel processing seems to be a tool that can be utilized to

accomplish this task.

Materials and Methods

Design of the Investigation

The cognitive ability of high school students to understand and implement parallel

processing was studied. A group of eigk high school students consisting of three boys

and five Os participated in the study. Four of the students were juniors and four were

seniors. The participants in the study have average and above average GPA's.

The project was conducted over a three week period with the class meeting for 42

minutes each day. If a teacher wanted to spend more time they could include more

instructional modules or increase the learning activities in each module. The projectwas

conducted during the month of May. The students completed two semesters of QBasic

prior to this project.

Software and Hardware Specifications

The two pieces of software needed for this project are the P4 parallel language and

the Linux operating system. Argonne National Laboratory developed P4 for programming

a variety of parallel machines. P4 is a library of macros and subroutines. Before P4,

programmers used the m4-based Argonne macros system "...described in the Holt,

Rinehart, and Winston book Portable Programs for Parallel Processors, by Lusk,

15

Overbeek, et al" (Butler 1992, 1). This is how P4 got its name. The present P4 system

uses the computational models: monitors for the shared-memory, message passing for

distributed memory, and support for combining the two. P4 is supposed to be portable,

simple to install and use, and efficient. P4 can be used to program workstations on

networks, advanced parallel supercomputers, and single shared memory multiprocessors.

Some machines it is currently installed on are Convex, Cray X/MP, Sun, DEC, Silicon

Graphics, HP, IBM RS6000, nCube, Intel 1PSC/860, and Thinking Machines CM-5. The

=rent release is version 1.4. Questions about P4 can be e-mailed to p4@mcs.an1.gov.

One can obtain the complete distribution of P4 by anonymous ftp from info.mcs.anl.gov.

The manual and installation files can be found in the `p4/doe' directory. It comes with

example pmgrams on shared memory, message passing in C, message passing in Fortran

and others. (Butler 1994, 2)

Linux is a free UNDK clone for personal computer systems. It rapports full

multitasking, the X Window System, TCP/IP networking, Emacs, UUCP, mail, and news

software. Linux is the operating system kernel that does process scheduling, virtual

memory, file management, and device I/O. It will run on any 386, 486, or pentium

computer.

UNIX is one of the most popular operating systems because of its large support

base and distribution. It was developed in the mid 1970's as a multitasking system for

minicomputers and mainframes. Versions of uNa exist for everything from personal

computers to supercomputers. The current U.S. cost for UNIX is about $1500.

16

23

Linux is a freely distributable version of UNIX developed by Linus Torvalds at the

University of Helsinki in Finland. Many programmers across the Internet also helped with

its development. It first started as a hobby for Linus who was motivated by a small UNIX

system called lvfmix. Early development of it dealt with task switching features of the

80386 interface all written in assembler. The first official version of Linux was introduced

on Oct. 5, 1991 (version .02). The official release of version 1 that was supposedly

complete and bug-free was March 1992. As of December 1993 the kernel was still at

version 0.99. Berkeley UNIX played an important role in helping to develop Linux.

(Welsh 1995, 6)

Some of the people who use Linux are application developers, network providers,

kernel hackers, and multimedia authors. Other uses Linux has are "managing

telecommunications and data analysis for an oceanographic research vessel, research

stations in Antarctica, and at hospitals to maintain patient records" (Welsh 1995, 6).

Over networks Linux is capable of sharing files, supporting remote logins, and

running windows on other systems. It is a complete multitasking, multi-user operating

system. The source code for Linux includes the kernel, device drivers, libraries, user

programs, and development tools.

The hardware components needed needed for this project are two computers, two

hard drives, two ethernet cards, and a connecting cable to connect the two processors. A

CD-Rom drive is convenient for installing the software. The hardware needs to be fine

tuned to support the software. This may include setting IRQ's for the various boards on

the system.

I 7

2

Procedures

To conduct this study, a series of six instructional modules were used over a three

week period. In the first instructional module the learning activities were followed as they

are written [See Appendix A]. For the htnnan simulation activity, a random number

generator program was written by the instnictor to generate 80 random numbers. These

were put in an array and printed out [See Appendix B]. A log sheet to record single and

multiple processor times was prepared by the instructor [See Appendix B]. The students

were told they were going to each simulate a single processor and calcrlate a total for the

list of eighty random numbers. They were first asked to enter on their log sheet an

individual hypothes for the amount of lime it would take to accomplish this task_ The

students were timed using calculators to total the random numbers. They entered their

individual times on their log sheets. For the multiple processor simulation, similar steps

were followed, except now they were to work as a team. During the actual event each

student had to add ten numbers. The first person's summation became the master process,

while the others were slave processes. The slaves had to run their totals to the master

process which, in turn, calculated a grand total. The timing of the simulation stopped at

this point. Average times were calculated for the group for each set of hypotheses and

each set of actual times.

The second instructional module began with a lecture discussion on how parallel

processing has evolved over the decades [See Appendix A]. It was a general overview in

order to convey to the students just how much parallel processing has developed from the

late 1940's to the 1990's. The students were given a parallel processing program written

18

in P4 [See Appendix B]. They were asked to look for code that was similar to QBasic

code they already knew. The code they found was discussed and analyzed. This led to

the programming language C, since P4 is written in C.

An in-depth discussion on the C programming language was the main focus in

instructional module three [See Appendix A]. A handout was give to the students called

"A Guide To C For Pascal Programmers" [See Appendix CI These students are not

Pascal programmers, but the handout covers the main topics needed for this instructional

module. Specific sections of the handout were discussed in detail. They were the basic

program structure; statements and compound statements; data types a, b, c, and e; the first

four operators; how to increment and decrement an integer; control structures; input and

output; preprocessor, compiling a program; and executing a program. The class applied

their handout notes on C to a program written in C [See Appendix C. With the guide as

a reference it was much easier to go through the code and analyze it.

Instructional module four followed the learning activities listed [See Appendix A].

After a brief review on compiling and executing C programs, the students used the

computers with the Linux operating system. They took turns compiling and executing the

random number C program handed out in instructional module three [See Appendix C].

The learning activities in instructional module five clearly explain what was done

over a three r 7 period [See Appendix A]. The handout of UNIX commands can be

found in Appendix D. The instructor logged into the University of Illinois at Springfield

through the modem to allow the students to experience a larger UNIX system.

19

The procedure for the sixth instructional module includes giving the students a

handout on P4 notes [See Appendices A and E]. The code the students typed into P4, as

indicated in the learning activities, is in Appendix E. The other two parallel programs

they compiled from the hard drive. They can be seen in Appendices B and E.

Methods for Observation and Interpretation

Students were vivally observed on a daily basis. Oral questioning and discussion

occurred between the instructor and students to aid in the evaluation process. This helped

to indicate when further instruction on a concept was needed. Different instructional

modules were videotaped for documentation purposes as well as for review of the

instructional lesson. Students commented on the tape about C code that looked similar to

QBasic code they had used in class.

In order to evaluate if the students were comprehending, a review day was

included followed by a quiz day over C at the end of its instructional modules [See

Appendix F]. This was also done for UNDC/Linux [See Appendix F]. Due to a lack of

time the quiz over P4 was omitted. This instructional material was included on the final

evaluation test. We concluded the evaluation process with a final test over all tkee

concepts [See Appendix F]. Statistics were correlated for each of these post-evaluation

measures. Students filled out an unsigned opinion survey of the whole project atler the

final test [See Appendix G]. Statistics were recorded for this as well. The statistics are

displayed in the Result Section.

20

2

Results

Overall the results of the instructional modules clearly indicate that high school

students can understand and implement parallel processing. Some of the results surprised

not only the students, but the instructor as well. The graphs in this section show the results

of the observations and experimental design.

The results of the human simulation are shown in Figurel. There is a significant

change between the single processor actual time class average and the multiple privessor

actual time class average. The single processor actual time average is rather high due to

one student losing her place in the list of random numbers. This skewed the average.

Figure 1

Human Simulation
Class Averages

Hypothesis Actual

Single Processor II Multiple Processor

21

26

The results of students searching P4 code for code that was familiar to them., given

they had studied QBasic, led the class into the next instructional module on the language

of C. The C handout guide gave tl. students concrete examples about the various parts

of the C language. The guide was helpful in analyzing the random number C code. Hands

on experience is the best teacher as was proven when the students compiled and executed

C programs Students concluded their instruction on C with a quiz (Appendix F, p70 &

71). Large amounts of information was given on C, which overwhelmed the students

taking the quiz. The instructional module was re-evaluated and an extra day was spent on

C. The students were better prepared on the second quiz. The scores were: 100, 93, 93,

93, 86, 86, 79, and 64. The statistical results can be seen in Figure 2.

C Quiz Results
Mean

Median 901

93Mode

Range

0 20 40 60
In Percent

III Total Students

80 100

22

Figure 2

The Linux handout was very useful when applying the commands on the

computers in the lab and when the students were logged in to the University of Illinois at

Springfield's Computer Lab through the modern The students really enjoyed Linux and

the e-mail available with it. The results of the Linux/UNIX quiz (Appendix F, p72) can be

found in Figure 3. The scores were: 100, 100, 90, 90, 90, 90, 90, and 90.

Ng= 3

As with C and Linux, hands on activities enhanced the learning of P4. The time

spent on the computers for all of the learning activities solidified the concepts that were in

the students minds. Three P4 modules were run on the parallel processors. The cognitive

undemanding of P4 was evaluated on the final test given over all three concepts.

23

U

The results of that test (Appendix F, p73-76) can be found in Figure 4. The scores were:

95, 94, 93, 92, 89, 87, 80, and 77.

Final Test
Linux, C, P4

Mean Median Mode

II Total Students

Range

Figure 4

After completing the final test the students filled out a survey (Appendix G,

p77) giving their opinions on all of the content areas that were taught. The results of the

survey can be found in Table 2. The last column indicates the average for each question

It is based on adding the totals for each quesfion and dividing by eight, since eight

students took the survey.

24

Student Survey Results

Excellent(4) Good(3) Fair(2) Poor(1) Avg/Quest

Question 1 8 18 0 0 3.25

Question 2 16 6 4 0 3.25

1 Question 3
1

16 6 4 0 3.25

I estion 4 16 6 2 1 3 125

Table 2

Thirty high schools in central Illinois were surveyed about programming and

parallel processing. Twenty-one of the surveys were returned (a 70% response rate).

Both large and small schools were surveyed. The results . f the survey can be found in

Table 3. The last cohnnn in the table indicates the most frequent answer given. Some of

the questions totals do not add up to twenty-one due to the fact that some respondants did

not answer all of the questions. The majority of the large schools responding did indicate

teaching programming in at least one language. The majority of the small rural schools

either did not offer programming in any language or they did not have it presently due to a

insufficient enrollment for those classes. Only a small number of rural schools currently

teach programming. None of the schools responding taught P4 or parallel processing in

another language. The survey can be found in Appendix G, p78.

The following questions were asked:

I. Do you teach programming in your computer science curriculum?

A. Yes B. No

2. How many programming languages do you teach at your school?

A 1 B. 2 C. 3

25

1

3. What programming languages do you teach in your computer science

curriculum? Circle all that apply.

Basic/QBasic B. Pascal C. Cobol D. Fortran

E. C/C-FF F. P4

4. Have you ever heard of parallel processing?

A Yes B. No

5. Do you teach P4 as a parallel processing language?

A Yes B. No

6. Would you be interested in learning more about parallel processing in the

future?

A Yes B. Maybe C. No

7. Would you consider at some point in the future teaching parallel processing?

A Yes B. Maybe C. No

11.S. Teacher Surv Results i

!

!

i

A B. C. D. E. F.

1
Maj

i

; Question1 15 6 yes

1 Question 2 9 7 1 1

1 Question 3 12 10 1 1 Basic

Question 4 8 12 No

i Question 5 0 19 No
,

; Question 6 4 10 6 May

! Question. 7 2 13 5 May

Table 3

26

3 3

Discussion

The results definitely indicate that high school students are capable of

understanding and implementing parallel processing. These results also indicate a high

level of understanding in the areas of the Linux operating system and the programming

language C.

The instructional module on C needed to be lengthened by one day in order to

review more thoroveily for the first quiz. This also involved repeating the quiz. The

students were insecure as to what kind of questions might be asked, even though examples

of questions were verbalized in class. The first C quiz ended up being a pre-quiz, which is

OK. This was their first exposure to these more advanced programming concepts.

The hands on experience with the modem and Linux/UNDC was the solid

experience necessary to emphasize the basics of UNIX to the students. The students had

no problems with e-mail once they started. The joe editor in Linux was easliy adapted to.

If the study were repeated it would be more beneficial to lengthen the P4

instructional module by another week. This would provide more hands on experience

with additional programs and would build upon the knowledge base already established.

From the teachers surveyed it was found that additional categories needed to be

added in order for each question's results to total the number of people participating in the

survey. For example question number two needed response D for zero languages taught.

27

3 ei

Another example is in question numbei three where response G should indicate other

languages taught. It was assumed that the programming languages taught at high schools

were done on IBM or IBM compatible personal computers. One respondent indicated

teaching hypertalk.

This topic definitely warrants further study. High school students are ready for

more challenges in the area of computer programming. It is up to educators to provide

those learning opportunities.

28

Appendix A

INSTRUCTIONAL MODULE

LESSON ONE

Learnin2 Objective:

Define parallel processing, give analogy examples of parallel processing, and do a hands

on simulation.

Time: 1 - 1 1/2 class periods

Equipment Needed:

Word processor software on computer to take notes, calculator, and pen or pencil.

Learning Activities:

1.) Through lecture define parallel processing

2.) Give analogy example 1 of one person putting books on library shelves vs. many

people working as a team passing books along from one section to another until all

books are shelved.

Give analogy example 2 of passing numbers down a pipeline until they are sorted

in order.

3.) Do an introductory activity that is a human simulation of single processors adding

a goup of random numbers and a second one simulating parallel processors in

which the students work together as a team.

29

Appendix A

INSTRUCTIONAL MODULE

LESSON TWO

Learning Objective:

Give a history overview of parallel processing and compare P4 program code

with QBasic code that is already known.

limei 1 class period.

Equipment Needed:

Word processor software on computer to take notes, P4 program code

handouts.

Learning Activities:

1.) Lecture on general history of parallel processing.

2.) Go over P4 code looking for familiar code. Explain the use of C

programming language with P4.

30

5 "i

Appendix A

INSTRUCTIONAL MODULE

LESSON ThREE

Learning Objective:

Introduce C programming language and evaluate random number C code for a single

processor.

Time: 1 class period

sluipment Needed:

C program handout

Random number on single processor handout.

Learning Activities:

1.) Discuss C program handout

2.) Go through random number code line by line.

3 1

Appendix A

INSTRUCTIONAL MODULE

LESSON FOUR

Learning Objective:

Compile random number C code on Linux system.

Time- 1 class period

Equipment Needed:

Computers with Linux operating system installed on hard drives

Learning Activities:

1.) r.:t 0 over from C notes how to compile and execute C program code.

2.) Instruct students how to log on to Linux system.

3.) Compile and execute random number code on single processor. Make

sure each student gets a chance to compile and execute the code.

32

3;4

Appendix A

INSTRUCTIONAL MODULE

LESSON FIVE

Learning Objective:

Introduce Unix/Linux in more detail.

Students experience hands on activities.

Time: 3 class periods.

Equipment Needed;

Unix/Linux commands handout.

Computers with Linux operating system installed on hard drives.

Access to a modem.

Learning Activities:

1.) Handout Unix/Linux commands most commonly used to students. Go

over and discuss them.

2.) While students are at the computeis, go over the Joe editor using our

random.c code to edit. Illustrate how to change code, re-compile it,

and go to specific line numbers in kc editor to correct mistakes.

3.) Explain how to use the e-mail (electronic mail) with the Linux system.

Allow students to send each other e-mail.

33

ti

4.) Login to the University of Illinois at Springfield computer lab through

the modem and allow students to practice commands from handout to

get a better idea how they work on a larger Unix system.

34

Appendix A

INSTRUCTIONAL MODta,E

LESSON SIX

Learning Objective:

Introduce P4 comaiands and run P4 code in parallel.

Time: 3 class periods

Equipment Needed:

Parallel Processors side by side with Linux and P4 installed on the hard drives.

Also need P4 handout for students and P4 code to enter or already loaded on the hard

drives.

Learning Activities:

1.) Handout P4 notes and go over special P4 commands that will be used.

2.) Have students enter code for "tiny" P4 program that passes the id number of the

master process to the slave, who in turn prints a message with the id number in it.

The slave processes do .ot do any work.

3.) Have students "make" and execute the P4 program that uses message passing to

send a character to the slave process and increment it.

4.) Have the students nm the P4 program that creates random numbers stored in an

array and sends them to be added by the slave processes while the master waits for

the return total sum.

35

Appendix B

LOG SHEET

FOR PARALLEL PROCESSING

Single Processor Human Simulation

Enter your hvuothesis for the time it will take to total the attached list of random
numbers.

Hypothesis:

Enter the actual time it took to totlil the list of random numbers.

Actual Time:

Multiple Processor Roman Simulation

Enter Your hYnothesis for the time it will lake to total patt of the attached list of random
numbers and then give that total to the first person done to finish the final total.

Hypothesis:

Enter the aMalljmg it took to total part of the list of random numbers and the final total
done by the first person finished.

Actual Time:

'Program to generate random numbers
'Spring 1995

DIM Numarray(1 TO 80)
RANDOMIZE (100)
Low = 0
High = 100
FOR I = 1 TO 80
r% = INT(RND * (High - Low + 1) + Low)
NumarrayI) = r%
PRINT Numarray(I),
NEXT I
END

Appendix B

65 78 62 88 42

75 11 40 3 63

55 10 17 70 17

2 32 80 50 43

22 0 37 60 60

50 29 85 5 73

100 79 35 79 28

83 79 3 8 97

96 3 82 79 67

66 95 72 17 47

80 58 60 39 66

32 66 60 9 4

61 64 55 26 46

82 13 44 39 86

73 74 51 79 33

0 76 8 57 12

4 4
37

Appendix B.

Kathy Sheary
P4 System Message Passing
Message Type Character.

1* msgchar.c *,

/* This .;mogram sends a value of A to the first slave each
slave increments the value and the final slave returns it
to the master. The master receives the final value and
stores it in letter and prints it.
The purpose of the program is to demonstrate how to send
and receive character values using the p4 system
Ted Mims

Springfield, IL 62794

*/

#include "p4.h"
int main(argc,argy)

int argc;
char **argy;

(void master°, slave();
p4_initenv(&argc,argv);

/* Of all of the processes which execute this code, only one has
p4_set nryid = 0. This will be the commanding process. All
others will be independent, subserviant processes.

*1

(P4_get rny _id() = 0)
{ p4 create_procgroup0;
master0;

else
slave();

p4 waitfor_end0;
printg" Main driver exiting normally for process VodAn",p4_get_my_id());

/* constants used to define data types of messages */
#define TAGINIT 10
#define TAGDATA 20
#define TAGEND 30

40
38

Appendix B

/* The master will initialize all of the slaves and send the value
of one to the first slave. The master will wait to receive a
final value that has incremented by each slave

*1

void master()
{ int from, i, to, type, size, num total_slaves;
/* type used to indicate the type of message

to used to indicate which slave to send to
size used to indicate the size of the message
num total_slaves used to hold the number of salve processes
form used to hold id of slave to receive from
i - used for loop control

*/

char *msg, letter,
/* msg used to hold pointer to the character message

letter used to store the char value received from slaves

size = sizeogint);
num total_slaves = p4_num_total_slaves();

/* initialize all slaves */
for (i = I; i <= num_total_slaves;

p4_sendr(TAGIN1T,i,(char *)&i,size);
p4_dprintf ("\n master initialized all slaves");

/* send 1 to process 1 */
to = 1;

letter = 'A',
size = sizeogchar);

p4_sendr(TAGDATA,to,(char *)&letter,size);
p4dprintr\ti master sent A to first slave");

/* wait for reply to come from last processor */
type = TAGDATA;
from = num total_slaves;

msg = NULL;
/* -I to receive from any slave */

letter = ";
p4 _recv(&type, &from, &msg, &size);
letter = *(char *)msg;

p4_dprint1("1n received letter 'Yoe from last slave ", letter);

P4insg_free(msg);
p4_dprintg"\n master exiting normally\n");

Appendix B

/*
Each slave will receive an integer from its left neighbor, add one
to it and pass it on to the next slave.
*1

void slave()
{ int next, type, sender, size, id, num_total_slaves, i;
/* int value used to store received msg as an integer

next used to indicate next slave or host to send to
type used to indicate the type of message
sender used to indicate the id of the sending process
size used to indicate the size of the message
id used to hold the id of this process
num_total_slaves used to hold the number of salve processes
i - used for loop control

*/

char *msg, letter value;
/* msg used to hold pointer to the character message

letter value used to store received msg as an integer
*1

size = sizeof(int);
type = TAGINIT;
sender = 0;

/* clear out value stored in the msg */
msg = NULL;
id = p4_get my_id();
num total_slaves = p4_num_total slaves();
if (id = num_total_slaves)

next = 0;
else

next = id + 1;
/* Each process accepts initialization message */

p4_recv(&type,&sender,&msg,&size);
p4_msg free(msg);
p4_dprintgnn process %d initialized\n", id);
msg = NULL;

/* Receive an message from the left neighbor */
sender = id - i;
type = TAGDATA;
p4 _recv(&typeAsender,&msgAsize);

/* convert the received message of type char to type integer */
letter value = *(char*)msg;

134_rnsg_free(ms8);
p4_dprintf("\n process O/od received letter %c from left neighbor",
id, letter value);

Appendix B

/* increment letter value by 1 */
letter_value++;

/* send to right neighbor */
p4_sendr(TAGDATA,next,(char*)&letter value, size);
p4_dprintf(\n process %d terminating",id);

Appendix C

A Guide to C for Pascal Programmers

This is written to help Pascal programmers translate their

programming style into a C programming style. This is not

necessarily complete, but all effort has been made to make this

understandable. For further information, the C reference paper is

one place to look.

I. Basic Program Structure

The basic structure of the program is this.

include declarations

preprocessor definitions

global declarations and definitions

main()

variable declarations

program statements

The only lines above which most be written exactly as is are

the "main" line and the two lines with braces.

One major difference between Pascal and (; is that in C all

procedures and functions are really functions, and all exist at

the same level of nesting as the main function, so that the

42

Appendix C

A Guide to C for Pascal Programmers

variable scope of Pascal is nonexistent. Variables declared

in the main program are imown only in the main program; variables

declared in other functions are known only in those functions in

which they are declared (except for global variables, which will be

mentioned later).

2. Statements and Compound Statements

The statement-compound statement style is much like Pascal

However, the open and close braces ({}) are used instead of "begin"

and "end". Comments are begun and ended as in P1.11. That is, /*

precedes and */ follows a comment. Statements and comments can

extend over many program lines, just as in Pascal. Anywhere a

statement can appear, a compound statement can also occur.

Semicolons must terminate any statement.

3. Data Types

a) "int" is the data type for 32-bit twos-complement integers

b) "char" is the data type for characters

c) "float" is the type for 32-bit floating point numbers

d) "double" is for 64-bit (double-precision) floating point

e) "char array[201" will declare an array of characters of

length 20.

43

Appendix C

A Guide to C for Pascai Programmers

f) Matrix arrays are declared in a slightly odd way:

"int ma-4151135r will declare a matrix of 15 rows

and 35 columns, corresponding to a Pascal declaration

"integer mat[0..14,0..34r.

NOTEall array subscripts start from zero, so this declaration

would be for an array of length 20 with subscripts 0 through 19.

This can be confiz-ingI myself almost always declare arrays to be

one longer than necessary and never use the zero-th location.

Structured data types are declared in a manner similar to Pascal.

The definition of a structure data type called "mpnum" (for

multiprecise number) could be

struct mpnum

int len;

int digits{201;

and then the declaration of a variable "thisnumber" of type

"mpnum" would be struct mpnum thisnumber,

It is also possible to define the type and declare a variable in

the same statement. I would recommend, however, that you define

Appendix C

A Guide to C for Pascal Programmers

the type globally, and declare the variables inside each routine.

4. Operators and Expressions

The assignment operator is the equal sign. It is possible to

declare and initialize variables in the same statement, as in "int

var =

In testing variables in expressions for use in while loops,

for loops, and if statements, the operators are

= for testing equality, as in "if(i=1)"

!= for testing inequality

>= and <= for greater and less than, respectively

> and < for greater and less than, respectively

&& and If for boolean anding and boolean oring, respectively

Now, for two of the strange and beautiful bits of C. You

will frequently have need of things like

i = i+j;

In C, this should be written

i+=j;

The difference is that for "i=i+j" the variable i will be fetched

twice, once on the right hand side and once to know where to store

the result. The "+=" notation does only one fetch. Although

45

Appendix C

A Guide to C for Pascal Programmers

efficiency is not necessarily a serious consideration, this is

considered the "proper" way to write C code. Also, it requires

less text, and therefore can be easier to read since there is less

to read. If what you have to do is just increment or decrement an

integer variable, though, use "i++" or "i". See the stuff on for

loops for an example.

5. Control Structures

The while loop is, for example,

While(donewithloop = NO)

body of loop statements fit in here

)

Note that, as in Pascal, if the body of the while is only one

statement, then the {} can be omitted. This is true for ail the

control structures. The for loop is different from other languages,

for example:

for(beginning value; condition; what to do each time)

statements

46

Appendix C

A Guide to C for Pascal Programmers

Example (note -the i-H-):

for(i=1; (i<=20) && (doneloop = NO);i-i-E)

statements

This runs a loop from 1 to 20, :ementing by one each time, with

the added condition(this is a nice feature of C) that a flag

variable can also be tested to get out of the loop early. The

"and" in expressions is done with a "&&", and the "or" is done

with a Be very careful with combined expressions, as the

order of evaluation in C is different from Pascal. I always

parenthesize everything completely to avoid learning the rules.

The if is very simple:

if (condition)

statements

else

47

t--0,1

Appendix C

A Guide to C for Pascal Programmers

statements

The usual rules about leaving off the else if not needed and

doing else ifs apply in C.

There is also a "switch" statement in C, which corresponds to

the "case" statement.

6. Lnput and output

The "read statement is called "scanf' in C. To read in an

integer num, a floating point x, ? character inchar, and a

"string"(array of characters)str, one would execute

scanf('%d %f %c %s", &num, &x, &inchar, &str);

The %d stuff is the input format. NOTEthe ampersand is very

important. This means pass the variable by referencepass the

address of the variableand is the only way to get something back

from a C fimction, which is what the scanf really is. One of the

very common errors is to forget this, and you get zapped very

quickly after executing the scan.

The "write statement is called printf', as in

pnntf("num=3/46d,x=%9.3f,inchar---%c\n"2,num,x,inchar);

Note that the "newline" must be explicitly specified with the

48

Appendix C

A Guide to C for Pascal Programmers

backslash n sequence. The %EA prints integers in a field of width

6, and the %9.3f does a floating point number in a 9-space field

with 3 decimals. And the rest of the stuff between quotation

marks is printed exactly as is. Note that you do not put the

ampersands before the variable names in the printf, which is why

you often forget them in the scanf

7. Data Tying

Pascal is a strongly typed language. When you pass integers to

reals in subprograms, the compiler catches you. When you overrun

array subscripts, you get flagged, C doesn't care about this sort

of stuff at all. It is not strongly typed. Indeed, in C it is

possible to do most of the "unsafe" things that Pascal was designed

to not allow one to do. Some of the common errors are to pass the

wrong kind of things to subprograms, or to pass by value when the

subprogram has arguments declared by reference, and so forth_ (One

such error is trying to print integers with floating point format,

or floating point values in integer format. The print works fine,

simply converting the bit configuration into whatever it

cotresponds to in the other dam type.)

8. Parameter Passing

49

Appendix C

A Guide to C for Pascal Programmers

The default passing method for all parameters is by value. To

call a function testit with two integer arguments a and b, the

calling program has

testit(a,&b);

and the function testit looks like

testit(a,b)

int a,*b;

statements of the function

The *b in the declaration declares b to be the address of an

integer variable b. In the function testit, the value of b would

then be referred to as *b, read "that which is pointed to by b".

This can be cumbersome at first.

All functions in C return(or can return) a value which is by

default an integer. The "return(somenurnber)" s statement returns a

value of whatever "somenumber" is. If no return statement is

executed, then the returned value is "void". Functions which

return values other than "int" must be declared as such both in the

calling program and in the first line of the function itself (just

50

Appendix C

A Guide to C for Pascal Programmers

like FORTRAN). No compile-time errors will occur(no strong data

typing, remember) but the bit configurations returned will be

interpreted as if they were integers.

Note that the use of a returned value can be very useful. The

scanf, for example, will return a value called EOF if end of file

is encountered. Thus, a read until endoffile can be done as

while(scanf("%d", &a) != EOF)

t

something

}

This allows you do the read and the test for end of file in one

very clean while statement.

While I'm on that topic, let me mention that you can do

assignments inside the condition part of a while loop or for loop

or if statement. A structure that will read and print one

character at a time until the newline is found is char c;

while((c=getcharO) != 'VI')

printf("%c",c);

This ties the function call to getchar, which is built in, assigns

the returned character to the variable c, and then tests to see

5 1

Appendix C

A Guide to C for Pascal Programmers

whether that is the builtin EOF marker. This can simplify input of

character data. There is no endofline or endoffile marker the

characters read are the characters there, including all the newline

character.

A common mistake in parameter passing is to pass an address to

one function and then pass the address to a second function which

is expecting the value.

9. The preprocessor

Rather than have defined constants, as in Pascal, C has a

preprocessor step. Go back to the first part of this, where it

mentions "defines". Before the "main" line, but afte.

"include" lines, you can define symbols and character strings to

the preprocessor. Before the compile, all the defined symbols are

replaced, I usually open all C programs with

Ainclude<stdio.h>

#define TRUE 1

#define FALSE 0

#deftne YES 1

#define NO 0

main()

52

Appendix C

A Guide to C for Pascal Programmers

This will define TRUE,FALSE, and so forth, internally, and when I

do tests or return good or bad flags from functions, I return one

of these. This way I never need to remember whether true is

internally 0 or 1. There are clever things you can do with C by

knowing such things, but I regard that as arcane and undesirable

style. It is customary to use capital letters for all

preprocessor symbols. You can use any sort of symbol you want.

A #define TEST <= would define TEST to be less than or equal, and

you could use TEST in a condition, to allow you to change the kind

of comparison later. Preprocessor stuff will not, repeat not, work

inside quoted strings(this often happens in using printf and

scanf).

One useful preprocessor feature is this:

gifdef DEBUG

debugging print statements

gendif

M when you compile this, you issue the command

cc-DDEBUG programname.c

then the statements between the ifdef and the endif are compiled,

If you compile it with

53

Appendix C

A Guide to C for Pascal Programmers

cc programname.c

then the statements between the ifdef and endif are commented out.

This lets you include extensive printing, and then take it out if

you want to get rid of extra printout to look at the thing as it

really is supposed to run. You can, of course, use any symbol for

"DEBUG"; the "-D" compile option defines the symbol "DEBUG" and you

can use more than one such option and symbol in a single

compilation.

10. The proper Way to Use "make" and to Organize Your Program Files

There is a Unix programming feature called "make" which allows

you to break your program into several files and have only the

changed files recompiled. There are various ways to use make,

What I do, and what I recommend to you, is this.

I have a file called "adefines.c" which has all my preprocessor

symbol definitions and definitions of structure data types.

I have a file called "aextern.c" which has the external

declarations of global variables which are declared in the main

program's heading.

The main program includes "adefines.c" but not "aextern.c" and

also has the declaration of global variables.

54

Appendix C

A Guide to C for Pascal Programmers

The functions called by the main program will be in files

called "bsomething.c" and will have "includes for both

"adefines.c" and Haextern.c".

For example, one could have:

File adefines.c:

ginclude<stdio.h>

Adefine FALSE 0

#define TRUE 1

#define NO 0

#deftne YES 1

struct mpnum

int len;

int digits[251;

};

File aextern.c:

extern struct mpnum mpone;

File amain c-

Anclude ."adefines.c"

struct mpnum mpone;

55

62

Appendix C

A Guide to C for Pascal Programmers

maim)

funQt I ();

File bfunetl.c:

#include "adefines.c"

#include "aextern.c"

funct10

File makeile:

testprog: amain.o bfunctl .o

cc amain.o bfunctl.o -o testprog

amain.o: adefines.c

cc amain.c

bfunct I .o: adefines.c aextern.c

cc bfunctl.c

To explair: To compile everything and lam the executable file

into something called "testprog" one simp!ly issues the command

"make. This causes the makenle to be read. The "testprog" ine

56

6;s

Appendix C

A. Guide to C for Pascal Programmers

says that to create "testprog" we need to have "amain.o" and

"bfunctl .0". (The suffix in the name; is significant. C programs

are called "something.c". The compiled object module is then

called "something.o".) The second line says that to create

"amain.o" and "bfunctl.o" we need to do a "cc" on those files and

name the result "testprog" (this is what the -o option does).

Continuing down, the amain.o" line says that compiling amain.c

requires the "adefmes.c" file. Similarly for the "bfunctl.o"

lines. Thus, if anything in the dependency tree has been changed,

things get recompiled. If not, then only the pieces needed are

recompiled. This saves LOTS of time. The prefodng of file names with "a",

"b", etc., makes them sort in a nice order when you list file names.

Appendix C

/* This is a random number generator in C. It will print each number. Additional code

may be added to accumulate the array of random numbers by the students.

Kathy Sheary

University of Illinois at Springfield

Spring 1995

*1

#include <stdlib.h>

#include <stdio.h>

int rand(void); /* random built in function

void srand(unsigned int); /* srand is used to seed rand */

#define HOW MANY 15 /* how many random numbers to generate */

#define MY_RANGE 100 /* 0 to MY_RANGE range of numbers

#define SEED 55 /* some seed value for using in srand */

main()

int x, ran;

srand(SETD); /* seed rand with SEED */

for (x = 0; x <= HOW_MANY; x-1-+)

(/* get the remainder of randO divided by MY_RANGE to store */

/* a random number between 0 and MY_RANGE in ran */

ran = rand() % MY_RANGE;

printg" ran is = %d1n",ran);

58

65

Appendix D

Useful Unix Commands

cat Display a file
cat filename

cc Compile a c program
cc compute.c Produces executable file a.out
cc compute.c -o compute.out Produces executable

file compute.out

cd Change working directory
cd / change to systems root directory
cd change to the parent of this directory
cd change to users home directory
cd mydir change to the directory mydir if it is a

subdirectory of the current working directory
cd mydir/two change to the directory two which is a

subdirectory of directory mydir

chmod Change access mode of a file or directory
chmod who[operation][permission] file
who a user, g group, o other users, a all
operafion + add permission, - remove permission,

= set permission for specified user
permission r read, w write, x execute,
chrnod u+rwx file name
chmod g+rx-w file name
chmod o+r-wx file name

Absolute form of clunod
chmod mode file
mode is a bit pattern for the mode of user, group,

and others
chmod 754 filename 754 represents 111101 100 in

binary. This is would give rwx permission to
the user, Tx permission to the group, and
r 1,,ermission to the others.

cp Copy source file to destination file
cp oldfile newfde

59

tth

Appendix

Useftd Unix Commands
env Status of environment

finger Status of a user
finger userid
finger mims@eagle.sangamon.edu

find find a file by name and print its path
find begin path -name name of file to find -print
find / -name copydots -prim

-- This will search for copydots begiming at the
root directory and print the path if found.

greP Search for a pattern in a file or input to the grep
command
Is -I grep mims This series of commands will

give a long listing of the current directory
as input to the grep command. The grep command
will find any input lines that contain the
string mims and print those lines.

ipcs Display information about interprocess communication
message queues, shared memory, and semaphores

ipcs Displays information in short form
ipcs -a Displays all information

ipcnn Used to remove message, shared memory, and semaphores
iperin -m shared memory id
ipant -s semaphore id

kill Terminate a process
kill [options] pid-list
options the default option is software termination

option 15. To insure the process will be killed
use the -9 option.

kill -9 123456 Where 123456 is the process id ofa
living process.

Is Display information about directories and files
Is [options] filelist
Options

60

Appendix D

Useful Unix Commands

-a list all files in current directory including
hidden files

-d displays directories without displaying their
contents

-I long form of display seven cohimns
-x list files horizontally

man Online manual for ;.ystem commands
man command
man who

rnesg Turn message receiving on or off'
mesg n Turn messages off
mesg y Turn messages on

mkdir Make a directory
mkdir mydir This command will make a new

subdirectory mydir in the current directory.

more Display a file or,input one screen at a time
more filename
Is -a I more This group of commands will cause

the output of the Is -a to be piped through the
more command and the list will appear one screen
at a time.

my Move a file to a new name. Rename a file
mv oldname newname

ps Display process status
ps [options]
Options
-a Display information for all processes
-e Display everything for all processes
-f Display a subset of the 4 option
4 Display a long status report 14 columns
-u user Display status for processes owned by the user
ps -u mims Displays information about processes

by user minis

61

(16

Appendix D
Useful Unix Commands

pwd Print name of current working directory

rm Remove a file. Delete a file
rm [options] filename
options
-f remove file for which you do not have write

permission without asking for your consent.
interactive You will be prompted for

confirmation before the file is actually removed.
-r recursive Will remove the contents of the

directory and the directory itself

rmdir Remove a directory
nndir directory name The directory must not

contain any files

stty Display or establish terminal parameters
stty [arguments]
arguments too many to list see manual

umask Establish file creation permissions
ulna* [mask]
mask is an octal number. This number is subtracted
from the systems default mask of 777.
umask 066 Will leave a pennission of 711 for

files that are created.
mask can be placed in the .login or .profile files

who Display names of users that are logged on
who

62

Appendix E

Parallel Processing Notes For P4

In P4, the program runs a master process and slave pror-esses. The master and set of
slaves form a ring of processes in which the master reads a message and sends a copy of the
message to the first slave, the last slave passes the message back to the master. If the master
receives an undamaged copy of the message, it assumes that all went well, and reads another
message. The ring of processes is a logical structure in which each process assumes that its
pre,decessor in the ring is the process with the next lower id, and its successor is the process
with the next higher id. The master has id 0 (zero) and has the process with the largest id as
its predecessor.

The first executable p4 statement in a program should be:
p4_initenv(Scargc,argv);

This initializes the p4 system and allows p4 to extract any command line arguments passed to
it.

The last executable p4 statement in a program should be:
pzi_wait_for_endO;

This waits for termination of p4 processes and performs some cleanup operations.

The procedure p4_get_my_id returns the unique integer id assigned to the calling
process by p4.

The procedures p4_send and p4_sendr arc two of several p4 procedures that arc
available for sending messages to other processes. They take as arguments the message type,
the id of the process to receive the message, the address of the message(the message
itself), and the message length(size).

The procedure p4_recv receives a message from another process and sets the values of
all four parameters (same as listed under p4_send). P4_recv will automatically retrieve a
buffer in which to place a received message, thus p4_msg_frec may be called to free that
buffer when it is no longer needed. When -1 is assigned to a parameter like from, then this is
a wildcard indicating the slave is willing t receive a message of any typc from any process.

Thc procedure p4_num_total_slaves is one of several procedures that the user can
invoke to determine information about the current execution.

The statement:
p4_create_procgroup();

reads a procgroup file that the user builds and creates the set of slaves described in thc file.
This statement must be executed before any slaves can be assumed to exist. This procedure
is the mcthod you must use to create processes that do message-passing. The procgroup file
describes where all slave processes arc to be executed.

63

Appendix E

The procgroup file we will use on Linux is:
local ()
first 1 messages/msgl
#second 1 -rnims/ruessages/msgl

Lines beginning with It are commcnts. "Local n" where n is the number of slave processes
that share memory with the master. The master has no local slaves. The next line indicates
the name of the remote machine on which slave processes arc to be created. The last line is
commented cat but set up in the event you want to make it a slave in the future. The name
of the file we will be compiling and executing is mszl.

In order to compile and link a p4 program for execution, you need to make the file. We
will need to copy our file, such as lab.c into msgl.c. The next step is to type: make rnsgl.
To run or execute the program type: msgl.

3 Methods for Parallel Programming
1. Message Passing - processes running at the same time send & receive messages
2. Distributed Data Structures - Processes communicate & coordinate by leaving data in

shared objects.
3. Live Data Structures - Process is part of data structure.

3 Approaches to Parallel Programs (Relate to Building a House)
1. Result - Hand out total project at the beginning to each processor (A house).
2. Agenda Hand out a list of tasks to each processor. (All workers with separate skills

work on first thing on agenda, then do 2nd'thing, etc.)
3. Specialist - Special tasks done by each processor. (Special tasks done by special people:

plumber, electrician, etc.)

I*

Appendix E

simplep4.c

This program is a simple beginning p4 program to illustrate process 0 creating the

environment. The procgroup starts the other slave processes. The slave process does

not do any work. The slave process is invoked and it prints hello from process 0.

Kathy Sheary

University of Illinois at Springfield

#include "p4.h"

main(argc,argv)

mt argc;

char **argv;

slave()

p4initenv(8cargc,argv);

if (134._get_my jdO = 0)

p4_create_procgroup0;

slave();

pkyait_for_end();

printg"Hello form %d \n", p4_getrnyid());

65

Appendix E

P4 Code with Array

This progral4 allows the user to pass an array from the main
processor to a second processor in blocks with a maximum of
19 integers be sent in each message
Ted Mims

Springfield, IL 62794

*/

#define NUMBERS 504 /* size of array to hold numbers for testing */
#define MAX 18 /* MAX is the maximum size for an array of integers */

/* that can be sent in a message */

#include <stdio.h>
#include cstdlib.h
#include "p4.h"
int main(argc,argv)

int argc;
char **argv;

{ void master(), slave();
p4_initenv(Egargc,argv);

/* Of all of the processes which execute this code, only one has
p4_get my_id = O. This will be the commanding process. All
others will be independent, subserviant processes.

if (p4_get my_id() == 0)
{ p4_create_procgroup0 1
master();

}

else

slave();
p4_wait_for_end();
printf(" Main driver exiting normally for process td.\n",p4_get my_id());

}

/* constants used to define data types of messages */
#define TAGINIT 10
#define TAGDAMA 20
#define TAGEND 30

/* The master will initialize all of the slaves and send the value
of one to the first slave. The master will wait to receive a
final value that has incremented by each slave

*/

void master()
{ int from, i, to, type, size, num_total_slaves, sum;

int *data_array;
/* type-- used to indicate the type of message

to -- used to indicate which slave to send to

66

Appendix E

P4 Code with Array

size -- used to indicate the size of the message
num_total_slaves -- used to hold the number of salve processes
form -- used to pold id of slave to receive from
i - used for loop control
sum - sum of the numbers in the array
data_array - pointer the array of numbers

*/

char *msg;
/* msg -- used to hold pointer to the character message */

size = sizeof(int);
num_total_slaves p4_num_total_slaves();

/* initialize all slaves */
for (i = 1; i <= num_total_slaves; i++)

p4_sendr(TAGINIT,i,(char *)&i,size);
p4_dprintf ("\n master.initialized all slaves");

/* setup an array and give it some values */
data_array (int *) malloc(NUMBERS * sireof(int));
for(i = 0; i < NUMBERS; i++)

data_array[i] = i;

/* send 1 to process 1 */
to . 1;
msg (char *) (data_array);
size = MAX * sizeof(int);

/* send the array to the other process in blocks of MAX intergers */

for(i = 1; i <.NUMBERS; i = i +18)

p4_sendr(TAGDATA,t0,(char *)msg, Size);

mag meg + size; /* increment the pointer to the next
/* group of MAX intergers

p4_dprintf("\n master sent strncture to first slave");

/* wait for reply to come from last processor */
type = TAGDATA;
from = num_total_slaves;

0/

from = -1;
/* -1 to receive from any slave */

p4_recv(&type, &from, &msg, &size);
sum = *(int *)msg;
p4_dprintf("\nThe sum of the array elements is td\n", sum);

p4_msg_free(msg);
p4_dprintf("\n master exiting normally\n");

67 "I

Appendix E

P4 Code with Array

/*
Each slave will receive an integer from its left neighbor, add one
to it and pass it on to the next slave.
*/

void slave()
{ int next, type, sender, size, id, num_total_slaves, i, j, sum;

int *data_array;
/* int_value -- used to store received msg as an integer

next -- used to indicate next slave or host to send to
type-- used to indicate the type of message
sender -- used to indicate the id of the sending process
size -- used to indicate the size of the message
id -- used to hold the id of this process
num_total_slaves -- used to hold the number of salve processes
i j - used for loop control
sum - sm of the numbers in the array
data_array - pointer to the array to hold the numbers

*/

char *msg;
/* msg -- used to hold pointer to the character message */

typedef struct _msg
{ int int_value[MAX];

} structure_type;
structure_type structure;

/* structure to hold MAX integers that are sen, in a group */
/* Allocate storage for the array */

data_array = (int *)(malloc (NUMBERS * sizeof(int)));
size . sizeof(int);
type = TAGINIT;
sender = 0;

/* clear out value stored in the msg */
msg = NULL;
id = p4_get_Ty_id();
num_total_slaves = p4_num_total_slaves();
if (id == num_total_slaves)

next . 0;
else

next = id + 1;
/* Each process accepts initialization message */

p4_recv(&type,asender,&msg,&size);
p4_msg_free(msg);
p4_dprintf("\n process Vd initialized\n", id);
msg . NULL;

/* Receive an message from the left neighbor */
sender . id - 1;

68

Appendix E

P4 Code with Array

type = TAGDATA;
for(i = 1; i <= NUMBERS; i = i + MAX)

p4_recv(&type,&sender,&msg,&size);
/* convert the received message of type char to type structure */

structure = *(structure_type *)msg;
/* transfer this group of MAX numbers into the array of numbers */

for(j = 0; j < MAX; j++)
data_array(j + i] = structure.int_value[j];

p4_msg_free(msg);

}

sum = 0;
/* sum the numbers and print them */

for(i = 0; i < NUMBERS; i++)

sum = sum + data_array[i];
p4_dprintf("\n data_array = Is.d\n", i, data_array[i]);

}

p4_dprintf("\nThe sum in the slave is kd\n",sum);
/* send to right neighbor */

size = sizeof(sum);
p4_sendr(TAGDATA,next,(char*)&sum, size);
p4_dprintf("\n process %.d terminating",id);

t)
69

Appendix F

PROGRAMMING QUI Z
C PROGRAMMING LANGUAGE

1. Explain what.the include files in C are for.
Example: #include <stdio.h>

G. How does C declare integer and character string variables?

3. Write a print statement in C to print your first initial.
Use the variable letter which has already been declared a
character string variable to represent your initial.
Use "My first initial is ".

4. Identify the labeled parts of the for loop in C below:

#define number of.random 1000_ _

A. B. C.
for(i=0; i<number_of_random; i++)

D. {

E. total num = total_num + num_array(iD

F.

Answers:

A.

B.

C.

D.

E.

F. y

70

Appendix F

5. Write a comment or remark statement for the define statement
in question #4 above using the remark symbols tnat C
requires. Put your answer below.

6. You have a file named: rand.c
Write the necessary code to compile the program to an output
file called rand.out.

7. Write a print statement in C to print your age. Use the
variable age. Use the sentence "My age is "

71 ti 6

Appendix F

PROGRAMMING II QUIZ
LINUX/UNIX

Match the following Unix commands with the correct definitions.

1. cp A. Locate a file by name and print its path.

2. fmger B. Change working directory.

3. kill C. Delete a file.

4. cc D. Display a file.

pwd E. Status of a user..5.

6. cd F. Terminate a process.

7. Is G. Display names of users that are logged on.

8. rm H. Copy source file to destination file.

9. cat I. Change access mode of a file or directory.

10. man J. Compile a C program.

11. Is -a K.*Display informatin about directories and files.

12. mkdir L. Display a process status.

13. who M. Print name of current working directory.

14. rmdir N. Move a file to a new name. Rename a file.

15. more 0. Remove a directory.

16. ps P. List all files in current direct,,..y including hidden files.

17. my Q. Display a flle or input one screen at a time.

18. fmd R. Online manual/help for system commands.

19. chmod S. Displays your name as the user.

20. whoami T. Make a directory.

72

Appendix F

PARALLEL PROCESSING TEST
OVER LINCYX/IJNIX, C, .Sc p4

True False Questions. Please answer with T or F.

1. Researchers first started considering the idea of
parallel processing in the late 1940's in order to build a
computer to simulate the human brain.

2. There was a lot of research in parallel processing
going on in the 1960's.

3. Research in parallel processing really picked up in
the 1970's due to more powerful microprocessors.

4. More emphasis occurred in the 1980's due to China
announcing a plan to build a new generation of powerful
computers that would use parallel processing.

5. The United States developed a parallel computer in

1986 that had 65,536 processors.

6. Parallel processing is a computer processing technique
that allows many operations to be performed at the same
time.

7.

8.

9.

10. The last executable 14 statement should be:
p4_wait_for end();

To compile and link a P4 program for execution, you
need to type: compile <filename>.

The procgroup describes where all master processes
will be executed.

The first executable P4 statement should be:
p4_initenv(&argc,argv);.

Short Answer.

11. Name the three methods for Parallel Programming.

1.

2.

3.

73 U

Appendix F

12. Name the three approaches to Parallel Programs as referred
to building a house and define each.

1.

2.

3.

13. You have copied your file array2.c to msgl.c and are ready
to compile and link the p4 program for execution. Write the
correct command for p4 to do this.

14. What is the command in p4 to send messages to other
processes?

15. What is the command in p4 to receive messages from another
process?

16. What are the four arguments (pieces of information) that get
sent with the process when using the send command in P4?

1.

2.

3.

4.

17. Explain what the include files in C are for.
Example: #include <stdio.h>

74 b

Appendix F

18. Write a print statement in C to print your grade in this
class, for example your grade is a 94.6. Use the variable
grade which has already been declared. Use "My grade is "

in your print statement.

19. You have a file named: random.c
Write the necessary code to compile the program to an output
file called random.out.

20. Write the proper Unix/Linux code to copy labl.c to msgl.c.

75 ,s2

1

1

1

1

PROGRAMMING II
LINUXIUNIX TEST

Match the following Unix commands with the correct definitions.

Appendix F

1. cp A. Locate a file by name and print its path.

2. fmger B. Change working directory.

3. kill C. Delete a file.

4. cc D. Display a file.

5. pwd E. Status of a user.

6. cd F. Terminate a process.

7. Is G. Display names of users that are logged on.

8. nn H. Copy source file to destination file.

9. cat I. Change access mode of a file or directory.

10. man J. Compile a C program.

11. Is -a K. Display informatin about directories and files.

12. mkdir L. Display a process status.

13. who M. Print name of current working directory.

14. rmdir N. Move a file to a new name. Rename a file.

15. more 0. Remove a directory.

16. ps P. List all files in current directory including hidden files.

17. my Q. Display a file or input one screen at a time.

18. find R. Online manual/help for system commands.

19. chmod S. Displays your name as the user.

20. whoarni T. Make a directory.

76 Si

Appendix G

STUDENT SURVEY OF PROJECT

1. Evaluate human processor simulation towards your
understanding of parallel processing. (addition of numbers
as individuals and then together as a team).

Excellent Good Fair Poor

2. Evaluate the lectures and demonstrations on programming in
the language of C. Did this increase your understanding of
C?

Excellent Good Fair Poor

3. Evaluate the lectures and demonstrations(in library) on
Linux/Unix towards your understanding of Linux/Unix.

Excellent Good Fair Poor

4. Evaluate the lectures and demonstrations on P4 programs as
done in class on the two computers with Linux as far as
helping with your understanding of P4.

Excellent Good Fair Poor

Thank you for your help and cooperation.
Mrs. Sheary

Appendix G May 18, 1995

Dear Colleague:

I too am a computer science teacher like yourself I am presently finishing a graduate

project and would appreciate your help in answering the following survey questions in order to

compile some statistical information. Please take a couple of minutes to complete the survey.

Enclose the completed survey in the self-addressed stamped envelope and mail it back by May 26,

1995.

I. Do you teach programming in your computer science curriculum?

A. Yes B. No

2. How many programming languages do you teach at your school?

A. 1 B. 2 C. 3

3. What programming languages do you teach in your computer science cuniculum? Circle all

that apply.

A. Basic/QBasic B. Pascal C. Cobol D. Fortran E. C/C4+ F. P4

4. Have you ever heard of parallel processing?

A Yes B. No

5. Do you teach P4 as a parallel processing language?

A. Yes B. No

6. Would you be interested in learning more about parallel processing in the future?

A. Yes B. Maybe C. No

7. Would you consider at some point in the future teaching parallel processing?

A. Yes

NAME:

SCHOOL:

B. Maybe C. No

Thank you for your cooperation. Enjoy your summer vacation!

Sincerely,

Kathy Sheary
Maroa-Forsyth H.S.
Computer Science Instructor

76

REFERENCES

Booch, Grady, "Corning of Age in an Object-Oriented World," IEEE Software

(November, 1994):33-41.

Butler, Ralph, Ewing Lusk, "User's Guide to the P4 Parallel Programming System",

Argonne National Laboratory (October, 1992 - Revised April, 1994):1-8.

Carriero, Nicholas, David Belernter, How to Write Parallel Programs - A First Course,

(MIT Press, 1992) 14.

Chaudhuri, Pranay, Paralle) Algorithms Design and Analysis, (Prentice Hall, 1992) 4-5.

Davidson, Rob, "Multitasking vs. Multiprocessing In Industrial Control Applicatiens,"

Chilton I and CS, 66 (February 1, 1993): 25-28.

Gehringer, Edward F., "Parallel Processing", Grolier Electronic Publishing. Inc 1994.

Hord, R. Nfichael, ' II 11 1 1 1..13 (CRC Press, 1993)

17.

Kumar, Vipin, Ananth Grama, Anshul Gupta, and George Karypis, Introduction to

Parallel Complain& (The Benjamin Cummings Publishing Company, Inc. 1994)

2-3.

Lafferty, Edward L., Parallel :Computing - An Introduction, (Noyes Data Corporation,

1993) 34-61.

Lazou, Christopher, Supercomputers and Their USQ, (Oxford University Press, 1986) 1-2.

Miler, Russ, "The Status of Parallel Processing Education", IEEE Computer, (August,

1994): 40-43.

79

Narad, Chuck, "Multiprocessing to Lead The Way", EiggEtamIc_pg5ign, 41 (November 22,

1993): 52.

Nevison, Christopher H., "Parallel Computing for Undergraduates", National Science

Foundation and Colgate University, (June, 1994): 4.

Ramakrishna, B., and Joseph Fisher, "Instruction-Level Parallel Processing: 1-Estoty,

Overview, and Perspective", The Journal of Supercomputing, 7 (May 1, 1993): 9-

50.

Schmit, Julie, "Developer: Key to Computers is Brain", USA Todkv, August 17, 1994:

2B

Welsh, Matt and Lar Kaufman, Runninglinilx, (O'Reilly and Associates, Inc., 1995) 1-7.

80

6 'i

Education

Experience

Course Work

Kathryn A. Sheary

B.S. in Education, Eastern Illinois University

Jr. High Mathematics, Piasa Southwestern Jr. I-Egh

Elementary Education, Breese Elementary School

Jr. Fligh Mathematics, Robinson Nuttall Middle School

1-ligh School Computer Science and Jr. FIlgh Mathematics, Maroa-

Forsyth FEgh School

System Operator, Maroa-Forsyth fligh School

Spring 92 PAC 414 -

Spring 94 CSC 474 -

Spring 94 CSC 476 -

Summer 94 CSC 484 -

Fall 94

Fail 94

Spring 95

Spring 95

Science, Technology, and Public Policy

Intro to System Programming and

Operating Systems

Intro to Nficroprocessors and Computer

Architecture

Intro to Parallel Processing

CSC 478 - Intro to Software Engineering

CSC 574 - Operating Systems

CSC 578 - Software Engineering

CSC 549 - Master's Closure Project

81

Sd

